Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.983
Filter
1.
Parasit Vectors ; 17(1): 208, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38720313

ABSTRACT

BACKGROUND: Triatoma infestans, Triatoma brasiliensis, Triatoma pseudomaculata and Rhodnius prolixus are vectors of Trypanosoma cruzi, the etiological agent of Chagas disease. Chickens serve as an important blood food source for triatomines. This study aimed to assess the insecticidal activity of fluralaner (Exzolt®) administered to chickens against triatomines (R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata). METHODS: Twelve non-breed chickens (Gallus gallus domesticus) were randomized based on weight into three groups: negative control (n = 4); a single dose of 0.5 mg/kg fluralaner (Exzolt®) (n = 4); two doses of 0.5 mg/kg fluralaner (Exzolt®) (n = 4). Nymphs of 3rd, 4th and 5th instars of R. prolixus, T. infestans, T. brasiliensis and T. pseudomaculata (all n = 10) were allowed to feed on chickens before treatment, and at intervals of 1, 7, 14, 21, 28, 35 and 56 days after treatment, with insect mortality determined. RESULTS: Treatment with two doses of fluralaner showed higher insecticidal efficacy against R. prolixus, T. infestans and T. brasiliensis compared to the single-dose treatment. Similar insecticidal efficacy was observed for T. pseudomaculata for one and two doses of fluralaner. Insecticidal activity of fluralaner (Exzolt®) against triatomine bugs was noted up to 21 and 28 days after treatment with one and two doses of fluralaner, respectively. CONCLUSIONS: The results demonstrate that treatment of chickens with fluralaner (Exzolt®) induces insecticidal activity against triatomines for up to 28 days post-treatment, suggesting its potential use as a control strategy for Chagas disease in endemic areas.


Subject(s)
Chickens , Insecticides , Isoxazoles , Animals , Chickens/parasitology , Isoxazoles/pharmacology , Isoxazoles/administration & dosage , Insecticides/pharmacology , Insecticides/administration & dosage , Insect Vectors/drug effects , Chagas Disease/transmission , Chagas Disease/drug therapy , Chagas Disease/veterinary , Triatominae , Nymph/drug effects , Poultry Diseases/parasitology , Poultry Diseases/prevention & control , Triatoma/drug effects
2.
Parasit Vectors ; 17(1): 214, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730303

ABSTRACT

BACKGROUND: Triatomines (kissing bugs) are natural vectors of trypanosomes, which are single-celled parasitic protozoans, such as Trypanosoma cruzi, T. conorhini and T. rangeli. The understanding of the transmission cycle of T. conorhini and Triatoma rubrofasciata in China is not fully known. METHODS: The parasites in the faeces and intestinal contents of the Tr. rubrofasciata were collected, and morphology indices were measured under a microscope to determine the species. DNA was extracted from the samples, and fragments of 18S rRNA, heat shock protein 70 (HSP70) and glycosomal glyceraldehyde-3-phosphate dehydrogenase (gGAPDH) were amplified and sequenced. The obtained sequences were then identified using the BLAST search engine, followed by several phylogenetic analyses. Finally, laboratory infections were conducted to test whether Tr. rubrofasciata transmit the parasite to rats (or mice) through bites. Moreover, 135 Tr. rubrofasciata samples were collected from the Guangxi region and were used in assays to investigate the prevalence of trypanosome infection. RESULTS: Trypanosoma sp. were found in the faeces and intestinal contents of Tr. rubrofasciata, which were collected in the Guangxi region of southern China and mostly exhibited characteristics typical of epimastigotes, such as the presence of a nucleus, a free flagellum and a kinetoplast. The body length ranged from 6.3 to 33.9 µm, the flagellum length ranged from 8.7 to 29.8 µm, the nucleus index was 0.6 and the kinetoplast length was -4.6. BLAST analysis revealed that the 18S rRNA, HSP70 and gGAPDH sequences of Trypanosoma sp. exhibited the highest degree of similarity with those of T. conorhini (99.7%, 99.0% and 99.0%, respectively) and formed a well-supported clade close to T. conorhini and T. vespertilionis but were distinct from those of T. rangeli and T. cruzi. Laboratory experiments revealed that both rats and mice developed low parasitaemia after inoculation with Trypanosoma sp. and laboratory-fed Tr. rubrofasciata became infected after feeding on trypanosome-positive rats and mice. However, the infected Tr. rubrofasciata did not transmit Trypanosoma sp. to their offspring. Moreover, our investigation revealed a high prevalence of Trypanosoma sp. infection in Tr. rubrofasciata, with up to 36.3% of specimens tested in the field being infected. CONCLUSIONS: Our study is the first to provide a solid record of T. conorhini from Tr. rubrofasciata in China with morphological and molecular evidence. This Chinese T. conorhini is unlikely to have spread through transovarial transmission in Tr. rubrofasciata, but instead, it is more likely that the parasite is transmitted between Tr. rubrofasciata and mice (or rats). However, there was a high prevalence of T. conorhini in the Tr. rubrofasciata from our collection sites and numerous human cases of Tr. rubrofasciata bites were recorded. Moreover, whether these T. conorhini strains are pathogenic to humans has not been investigated.


Subject(s)
Insect Vectors , Phylogeny , RNA, Ribosomal, 18S , Triatoma , Trypanosoma , Animals , China/epidemiology , Rats , Mice , Trypanosoma/genetics , Trypanosoma/isolation & purification , Trypanosoma/classification , Triatoma/parasitology , RNA, Ribosomal, 18S/genetics , Insect Vectors/parasitology , Trypanosomiasis/parasitology , Trypanosomiasis/transmission , Trypanosomiasis/veterinary , Trypanosomiasis/epidemiology , Feces/parasitology , HSP70 Heat-Shock Proteins/genetics , DNA, Protozoan/genetics , Female , Male
3.
Parasit Vectors ; 17(1): 169, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566228

ABSTRACT

BACKGROUND: Triatoma garciabesi and T. guasayana are considered secondary vectors of Trypanosoma cruzi and frequently invade rural houses in central Argentina. Wing and head structures determine the ability of triatomines to disperse. Environmental changes exert selective pressures on populations of both species, promoting changes in these structures that could have consequences for flight dispersal. The aim of this study was to investigate the relationship between a gradient of anthropization and phenotypic plasticity in flight-related traits. METHODS: The research was carried out in Cruz del Eje and Ischilín departments (Córdoba, Argentina) and included 423 individuals of the two species of triatomines. To measure the degree of anthropization, a thematic map was constructed using supervised classification, from which seven landscapes were selected, and nine landscape metrics were extracted and used in a hierarchical analysis. To determine the flight capacity and the invasion of dwellings at different levels of anthropization for both species, entomological indices were calculated. Digital images of the body, head and wings were used to measure linear and geometric morphometric variables related to flight dispersion. One-way ANOVA and canonical variate analysis (CVA) were used to analyze differences in size and shape between levels of anthropization. Procrustes variance of shape was calculated to analyze differences in phenotypic variation in heads and wings. RESULTS: Hierarchical analysis was used to classify the landscapes into three levels of anthropization: high, intermediate and low. The dispersal index for both species yielded similar results across the anthropization gradient. However, in less anthropized landscapes, the density index was higher for T. garciabesi. Additionally, in highly anthropized landscapes, females and males of both species exhibited reduced numbers. Regarding phenotypic changes, the size of body, head and wings of T. garciabesi captured in the most anthropized landscapes was greater than for those captured in less anthropized landscapes. No differences in body size were observed in T. guasayana collected in the different landscapes. However, males from highly anthropized landscapes had smaller heads and wings than those captured in less anthropized landscapes. Both wing and head shapes varied between less and more anthropogenic environments in both species. CONCLUSIONS: Results of the study indicate that the flight-dispersal characteristics of T. garciabesi and T. guasayana changed in response to varying degrees of anthropization.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Humans , Male , Animals , Female , Triatoma/physiology , Rural Population , Argentina , Analysis of Variance
4.
Arch Insect Biochem Physiol ; 115(4): e22106, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38597092

ABSTRACT

Kissing bugs do not respond to host cues when recently molted and only exhibit robust host-seeking several days after ecdysis. Behavioral plasticity has peripheral correlates in antennal gene expression changes through the week after ecdysis. The mechanisms regulating these peripheral changes are still unknown, but neuropeptide, G-protein coupled receptor, nuclear receptor, and takeout genes likely modulate peripheral sensory physiology. We evaluated their expression in antennal transcriptomes along the first week postecdysis of Rhodnius prolixus 5th instar larvae. Besides, we performed clustering and co-expression analyses to reveal relationships between neuromodulatory (NM) and sensory genes. Significant changes in transcript abundance were detected for 50 NM genes. We identified 73 sensory-related and NM genes that were assigned to nine clusters. According to their expression patterns, clusters were classified into four groups: two including genes up or downregulated immediately after ecdysis; and two with genes with expression altered at day 2. Several NM genes together with sensory genes belong to the first group, suggesting functional interactions. Co-expression network analysis revealed a set of genes that seem to connect with sensory system maturation. Significant expression changes in NM components were described in the antennae of R. prolixus after ecdysis, suggesting that a local NM system acts on antennal physiology. These changes may modify the sensitivity of kissing bugs to host cues during this maturation interval.


Subject(s)
Neuropeptides , Rhodnius , Triatoma , Animals , Rhodnius/genetics , Rhodnius/metabolism , Neuropeptides/genetics , Neuropeptides/metabolism , Transcriptome , Molting
5.
Rev Soc Bras Med Trop ; 57: e007032024, 2024.
Article in English | MEDLINE | ID: mdl-38537000

ABSTRACT

BACKGROUND: Chagas disease, a zoonosis transmitted mainly by hematophagous insects of the subfamily Triatominae, is caused by Trypanosoma cruzi, classified into six discrete typing units (DTUs: TcI-TcVI and Tcbat). METHODS: Insect vectors were collected from 84 human dwellings in the municipality of Santo Domingo Tehuantepec, Oaxaca, Mexico; 4.76% were infested. DTUs were determined using conventional and nested PCR. RESULTS: The infection rate was 43.6%. All insects were infected with TcI while one specimen showed mixed infection with TcII. CONCLUSIONS: This is the first report of T. cruzi mixed infection in Triatoma phyllosoma, its main vector in the study region.


Subject(s)
Chagas Disease , Coinfection , Triatoma , Trypanosoma cruzi , Animals , Humans , Trypanosoma cruzi/genetics , Mexico , Genotype
6.
Acta Trop ; 253: 107169, 2024 May.
Article in English | MEDLINE | ID: mdl-38432403

ABSTRACT

Triatoma dimidiata is a vector of the hemoparasite Trypanosoma cruzi, the causal agent of Chagas disease. It settles reproductive colonies in the peridomicile of the premises. The peridomicile is comprised of a random set of artificial and natural features that overlap and assemble a network of microenvironmental suitable sites (patches) that interact with each other and favor the structure and proliferation of T. dimidiata colonies. The heterogeneity of patch characteristics hinders the understanding and identification of sites susceptible to colonization. In this study, a classification system using a random forest algorithm was used to identify peridomiciles susceptible to colonization to describe the spatial distribution of these sites and their relationship with the colonies of T. dimidiata in ten localities of Yucatan. From 1,000 peridomiciles reviewed, the classification showed that 13.9 % (139) of the patches were highly susceptible (HSP), and 86.1 % (861) were less susceptible (LSP). All localities had at least one HSP. The occupancy by patch type showed that the percentage of total occupancy and by colonies was higher in the HSP, while the occupancy by adult T. dimidiata without evidence of nymphs or exuviae (propagules) was higher in the LSP. A generalized additive model (GAM) revealed that the percentage of occupied patches increases as the abundance of individuals in the localities increases however, the percentage of occupied patches in LSP is lower than occupied in HSP. Distance analyses revealed that colonies and propagules were located significantly closer (approximately 200 m) to a colony in a HSP than any colony in a LSP. The distribution of T. dimidiata in the localities was defined by the distribution of patch type; as the occupancy in these patches increased, a network of peridomestic populations was configured, which may be promoted by a greater abundance of insects inside the localities. These results reveal that the spatial distribution of T. dimidiata individuals and colonies in the peridomicile at the locality scale corresponds to a metapopulation pattern within the localities through a system of patches mediated by distance and level of the vectors' occupancy.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Humans , Animals , Triatoma/parasitology , Insect Vectors/parasitology , Nymph
7.
Parasit Vectors ; 17(1): 145, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500121

ABSTRACT

BACKGROUND: Triatoma garciabesi, a potential vector of the parasitic protozoan Trypanosoma cruzi, which is the causative agent of Chagas disease, is common in peridomestic and wild environments and found throughout northwestern and central Argentina, western Paraguay and the Bolivian Chaco. Genetic differentiation of a species across its range can help to understand dispersal patterns and connectivity between habitats. Dispersal by flight is considered to be the main active dispersal strategy used by triatomines. In particular, the morphological structure of the hemelytra is associated with their function. The aim of this study was to understand how genetic diversity is structured, how morphological variation of dispersal-related traits varies with genetic diversity and how the morphological characteristics of dispersal-related traits may explain the current distribution of genetic lineages in this species. METHODS: Males from 24 populations of T. garciabesi across its distribution range were examined. The cytochrome c oxidase I gene (coI) was used for genetic diversity analyses. A geometric morphometric method based on landmarks was used for morpho-functional analysis of the hemelytra. Centroid size (CS) and shape of the forewing, and contour of both parts of the forewing, the head and the pronotum were characterised. Length and area of the forewing were measured to estimate the aspect ratio. RESULTS: The morphometric and phylogenetic analysis identified two distinct lineages, namely the Eastern and Western lineages, which coincide with different ecological regions. The Eastern lineage is found exclusively in the eastern region of Argentina (Chaco and Formosa provinces), whereas the Western lineage is prevalent in the rest of the geographical range of the species. CS, shape and aspect ratio of the hemelytra differed between lineages. The stiff portion of the forewing was more developed in the Eastern lineage. The shape of both portions of the hemelytra were significantly different between lineages, and the shape of the head and pronotum differed between lineages. CONCLUSIONS: The results provide preliminary insights into the evolution and diversification of T. garciabesi. Variation in the forewing, pronotum and head is congruent with genetic divergence. Consistent with genetic divergence, morphometry variation was clustered according to lineages, with congruent variation in the size and shape of the forewing, pronotum and head.


Subject(s)
Chagas Disease , Triatoma , Male , Animals , Phylogeny , Insect Vectors , Genetic Variation
8.
Am J Trop Med Hyg ; 110(5): 925-929, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38531096

ABSTRACT

In July and October 2023, two live triatomine bugs were found inside a home in New Castle County, Delaware. The bugs were identified as Triatoma sanguisuga, the most widespread triatomine bug species in the United States. Triatoma sanguisuga is a competent vector of Trypanosoma cruzi, the causative agent of Chagas disease. The two specimens were tested via real-time PCR (qPCR) for infection with T. cruzi, and one of the specimens was positive. Despite T. sanguisuga being endemic to the area, attainment of accurate species identification and T. cruzi testing of the bugs required multiple calls to federal, state, private, and academic institutions over several months. This constitutes the first report of T. sanguisuga infected with T. cruzi in Delaware. In addition, this is the first published report of T. sanguisuga in New Castle County, the northernmost and most densely populated county in Delaware. New Castle County still conforms to the described geographic range of T. sanguisuga, which spans from Texas to the East Coast of the United States. The T. cruzi infection prevalence of the species has not been studied in the northeastern United States, but collections in southern states have found prevalences as high as 60%. The Delaware homeowner's lengthy pursuit of accurate information about the vector highlights the need for more research on this important disease vector in Delaware.


Subject(s)
Chagas Disease , Insect Vectors , Triatoma , Trypanosoma cruzi , Animals , Triatoma/parasitology , Chagas Disease/epidemiology , Chagas Disease/transmission , Delaware/epidemiology , Trypanosoma cruzi/isolation & purification , Trypanosoma cruzi/genetics , Insect Vectors/parasitology , Humans
9.
Acta Trop ; 252: 107144, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38336343

ABSTRACT

Understanding the population dynamics of vectors is crucial for effective control of vector-borne diseases. In the Northeastern Brazilian semi-arid region, Triatoma brasiliensis persists as the most significant Chagas disease vector, frequently displaying recurrent domiciliary infestations. This situation raises relevant public health concerns in the municipality of Currais Novos in the state of Rio Grande do Norte. This area has experienced a high prevalence of peridomiciliary re-infestations by T. brasiliensis, coupled with elevated rates of Trypanosoma cruzi infection. Therefore, we assessed the distribution of genetic variation via mitochondrial Cytochrome b gene (MT-CYB) sequencing (n = 109) and single nucleotide polymorphisms (SNPs, n = 86) to assess the gene flow among distinct populations distributed in varied geographic spots and environments, mainly sylvatic and peridomiciliary. Insects were collected from rural communities at Currais Novos, enclosed within a 16 km radius. Sampling included 13 populations: one intradomiciliary, eight peridomiciliary, and four sylvatic. Furthermore, an external population located 220 km from Currais Novos was also included in the study. The method employed to obtain SNP information relied on ddRAD-seq genotyping-by-sequencing (GBS), enabling a genome-wide analysis to infer genetic variation. Through AMOVA analysis of MT-CYB gene variation, we identified four distinct population groups with statistical significance (FCT= 0.42; p<0.05). We identified a total of 3,013 SNPs through GBS, with 11 loci showing putative signs of being under selection. The variation based on 3,002 neutral loci evidenced low genetic structuration based on low FST values (p>0.05), indicating local panmixia. However, resampling algorithms pointed out that three samples from the external population were assigned (>98 %) in a cluster contrasting from the ones putatively under local panmixia - validating the newly applied genome-wide marker for studies on the population genetics at finer-scale resolution for T. brasiliensis. The presence of population structuring in some of the sampled points, as suggested by the mitochondrial marker, leads us to assume that infestations were probably initiated by small populations of females - demographic event poses a risk for rapid re-infestations. The local panmictic pattern revealed by the GBS marker poses a challenge for vector control measures, as re-infestation foci may be distributed over a wide geographical and ecological range. In such instances, vectors exhibit reduced susceptibility to conventional insecticide spraying operations since sylvatic populations are beyond the reach of these interventions. The pattern of infestation exhibited by T. brasiliensis necessitates integrating innovative strategies into the existing control framework, holding the potential to create a more resilient and adaptive vector control program. In our dataset, the results demonstrated that the genetic signals from both markers were complementary. Therefore, it is essential to consider the nature and inheritance pattern of each marker when inferring the pattern of re-infestations.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Female , Humans , Triatoma/genetics , Brazil/epidemiology , Trypanosoma cruzi/genetics , Chagas Disease/epidemiology , Genetics, Population , Genomics
10.
Acta Trop ; 252: 107149, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38360259

ABSTRACT

The enzyme NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochromes P450 activity. Gene expression analysis of cytochromes P450 and CPR in deltamethrin-resistant and susceptible populations revealed that P450s genes are involved in the development of insecticide resistance in Triatoma infestans. To clarify the role of cytochromes P450 in insecticide resistance, it was proposed to investigate the effect of CPR gene silencing by RNA interference (RNAi) in a pyrethroid resistant population of T. infestans. Silencing of the CPR gene showed a significant increase in susceptibility to deltamethrin in the population analysed. This result support the hypothesis that the metabolic process of detoxification mediated by cytochromes P450 contributes to the decreased deltamethrin susceptibility observed in the resistant strain of T. infestans.


Subject(s)
Chagas Disease , Insecticides , Pyrethrins , Triatoma , Animals , Insecticides/pharmacology , RNA Interference , Pyrethrins/pharmacology , Chagas Disease/genetics , Nitriles/pharmacology , Insecticide Resistance/genetics , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Cytochrome P-450 Enzyme System/pharmacology
11.
Acta Trop ; 252: 107152, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38382592

ABSTRACT

The control of triatomine vectors depends almost exclusively on conventional insecticides. These compounds can, nevertheless, cause negative effects on environmental and human health as well as induce resistance in triatomines. Therefore, we need to look for more sustainable alternatives. Triatoma pallidipennis is one of the main chagasic vectors in Mexico. We evaluated the insecticidal effectiveness of two oils (neem and cinnamon), and two desiccants (potassium salts of fatty acids and diatomaceous earth), on 3rd instar nymphs of T. pallidipennis. The laboratory test involved direct exposure of the treatments to the insects. We found that diatomaceous earths caused 80 % mortality of nymphs after 30 days. Meanwhile, the cumulative mortality for the other treatments did not exceed 50 %. When applied to inert surfaces, the powder formulation of diatomaceous earth demonstrated greater effectiveness than the aqueous suspension. Thus, diatomaceous earth could be a promising alternative for an environmentally friendly control of triatomines.


Subject(s)
Chagas Disease , Insecticides , Triatoma , Triatominae , Animals , Humans , Insecticides/pharmacology , Diatomaceous Earth/pharmacology , Insect Vectors , Nymph
12.
J Med Entomol ; 61(2): 309-317, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38339860

ABSTRACT

Chagas disease is one of the most significant vector-borne diseases in Mexico. The presence of "sylvatic" triatomine vectors of Trypanosoma cruzi (Chagas) inside human dwellings necessitates estimating their vectorial capacity. To estimate this capacity in Triatoma protracta nahuatlae (Ryckman), Triatoma sinaloensis (Ryckman), and their laboratory hybrids, 6 biological parameters were examined. Triatoma sinaloensis exhibited the shortest development time (155 days), with a median of 12 blood meals. Mortality rates varied from 35% to 45% in the 3 studied cohorts. All 3 cohorts were aggressive, initiating feeding within 0.5-1 min, and had similar feeding periods ranging from 10 to 18 min. A majority (75.3-97.9%) of the hybrids defecated when feeding, immediately after feeding, or in less than 1 min post-feeding. In contrast, only 7-42% of nymphs of T. sinaloensis defecated during the same period. Our results regarding the 6 parameters studied confirm the potential role of T. p. nahuatlae as an efficient vector of T. cruzi. Triatoma sinaloensis, on the other hand, exhibited limited vectorial capacity primarily due to its poor defecation behavior. Continued surveillance of these "sylvatic" triatomine populations is necessary to prevent an epidemiological problem.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Humans , Animals , Nymph , Laboratories , Feeding Behavior
13.
Rev Soc Bras Med Trop ; 57: e007002023, 2024.
Article in English | MEDLINE | ID: mdl-38324807

ABSTRACT

BACKGROUND: We assessed the distribution of triatomines in an endemic area for Chagas disease. METHODS: This retrospective study used secondary data extracted from the Official System of the National Chagas Disease Control Program (Sistema Oficial do Programa Nacional de Controle da Doença de Chagas - SisPCDCh). RESULTS: A total of 7,257 (725.7 ± 221.7 per year) specimens were collected from 2013 to 2022. Most of them (6,792; 93.6%) were collected in the intradomicile and 465 (6.4%) in the peridomicile. A total of 513 (7.1%) triatomines tested positive for the presence of trypomastigote forms, similar to Trypanosoma cruzi. CONCLUSIONS: The spatial analysis revealed a heterogeneous distribution of triatomines across different municipalities.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Humans , Brazil/epidemiology , Retrospective Studies , Insect Vectors , Chagas Disease/epidemiology
14.
PLoS Negl Trop Dis ; 18(2): e0011898, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38329945

ABSTRACT

Chagas disease (ChD), caused by infection with the flagellated protozoan, Trypanosoma cruzi, has a complicated transmission cycle with many infection routes. These include vector-borne (via the triatomine (reduviid bug) vector defecating into a skin abrasion, usually following a blood meal), transplacental transmission, blood transfusion, organ transplant, laboratory accident, and foodborne transmission. Foodborne transmission may occur due to ingestion of meat or blood from infected animals or from ingestion of other foods (often fruit juice) contaminated by infected vectors or secretions from reservoir hosts. Despite the high disease burden associated with ChD, it was omitted from the original World Health Organization estimates of foodborne disease burden that were published in 2015. As these estimates are currently being updated, this review presents arguments for including ChD in new estimates of the global burden of foodborne disease. Preliminary calculations suggest a burden of at least 137,000 Disability Adjusted Life Years, but this does not take into account the greater symptom severity associated with foodborne transmission. Thus, we also provide information regarding the greater health burden in endemic areas associated with foodborne infection compared with vector-borne infection, with higher mortality and more severe symptoms. We therefore suggest that it is insufficient to use source attribution alone to determine the foodborne proportion of current burden estimates, as this may underestimate the higher disability and mortality associated with the foodborne infection route.


Subject(s)
Chagas Disease , Foodborne Diseases , Triatoma , Trypanosoma cruzi , Animals , Chagas Disease/epidemiology , Foodborne Diseases/epidemiology , Cost of Illness
15.
Parasit Vectors ; 17(1): 41, 2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38287434

ABSTRACT

BACKGROUND: Chagas disease is a neglected tropical disease (NTD). Cost-effective strategies for large-scale implementation of diagnosis and etiological treatment are urgently needed to comply with NTD control goals. We determined the seroprevalence of Trypanosoma cruzi infection and associated risk factors in a well-defined rural population of Pampa del Indio municipality including creole and indigenous (Qom) households and developed two indices to identify houses harboring infected children. METHODS: We serodiagnosed and administered a questionnaire to 1337 residents (48.2% of the listed population) in two sections of the municipality (named Areas II and IV) 6-9 years after deploying sustained vector control interventions. Multiple logistic regression models were used to evaluate the relationship between human infection and a priori selected predictors. Two risk indices were constructed based on environmental and serostatus variables, and we used spatial analysis to test whether households harboring T. cruzi-seropositive children were randomly distributed. RESULTS: The global seroprevalence of T. cruzi infection was 24.8%. Human infection was positively and significantly associated with exposure time to triatomines, the household number of seropositive co-inhabitants, maternal seropositivity for T. cruzi, recent residence at the current house and the presence of suitable walls for triatomine colonization in the domicile. The pre-intervention mean annual force of infection (FOI) was 1.23 per 100 person-years. Creoles from Area IV exhibited the highest seroprevalence and FOI; Qom people from both areas displayed intermediate ones and creoles from Area II the lowest. Three hotspots of infected children were spatially associated with hotspots of triatomine abundance at baseline and persistent house infestation. No child born after vector control interventions was T. cruzi seropositive except for one putative transplacental case. Two simple risk indices (based on self-reported inhabiting an infested house and suitable walls for triatomines or maternal serostatus) identified 97.3-98.6% of the households with at least one T. cruzi-seropositive child. CONCLUSIONS: We showed strong heterogeneity in the seroprevalence of T. cruzi infection within and between ethnic groups inhabiting neighboring rural areas. Developed indices can be used for household risk stratification and to improve access of rural residents to serodiagnosis and treatment and may be easily transferred to primary healthcare personnel.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Animals , Child , Humans , Chagas Disease/epidemiology , Risk Factors , Seroepidemiologic Studies , Triatoma , Indigenous Peoples , Argentina
16.
Acta Trop ; 251: 107107, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38190930

ABSTRACT

Exploring the dynamics of disease transmission involves an understanding of complex interactions within the eco-epidemiologic framework. In the context of Chagas disease (CD), elements are mainly represented by the interactions among the pathogen, insect vector, host, humans and the environment. We performed quantitative and qualitative analyses on a dataset derived from 98 Triatoma brasiliensis infected by trypanosomatids, which were linked to a CD outbreak in the semi-arid region of northeastern Brazil. We extracted invertebrate-derived DNA (iDNA) from these insects, comprising 18 populations around the outbreak area, each indicative of various strata of anthropogenic influence. Food source (FS) diversity, representing potential parasite reservoirs, was determined through mitochondrial gene (cyt b) sequencing of vertebrates, and parasite genotyping was accessed using fluorescent amplified fragment barcodes (FFLB) of trypanosomatids. We also assessed the residents' awareness of breeding sites for CD vectors in the inspected houses. The quantification of Trypanosoma cruzi was estimated via real-time PCR and is denominated here as the average parasite load (PL) per insect (T. cruzi/intestinal unit). We aimed to address vector-parasite-host-environment interactions that were discussed based on their significance among the components. Notably, among the significant interactions, we observed that the PL in the insects was significantly influenced by FS. Infected insects that fed on the classic reservoir, Didelphis albiventris, and Galea spixii exhibited higher PLs, compared to those that fed on Kerodon rupestris (p < 0.04)-a primary host. While D. albiventris is already recognized as a synanthropic species, we propose that G. spixii may also be undergoing a synanthropic process. Conversely, domestic cats are frequently identified as FS in infected insects from the sylvatic environment, suggesting a possible change in their behavior towards a wild state. Therefore, we propose that neglected anthropogenic actions have facilitated the reciprocal (sylvatic-peridomestic) circulation of T. cruzi-especially noted for TcI because it was predominant in insects found in peridomestic environments. Residents are often unaware of the existence of insect breeding grounds near their homes, particularly when it involves the storage of materials without planning for use, such as piles of tiles, bricks and wood. Although indirect inferences about the interaction among vector-parasite-host-environment are still incipient, we highlight the potential use of vectors as natural samplers of biological and ecological components in transmitting the disease.


Subject(s)
Chagas Disease , Didelphis , Triatoma , Trypanosoma cruzi , Humans , Animals , Cats , Triatoma/genetics , Triatoma/parasitology , Ecosystem , Trypanosoma cruzi/genetics , Disease Outbreaks , Rodentia/parasitology , Didelphis/parasitology
17.
Sci Rep ; 14(1): 1412, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38228608

ABSTRACT

Chagas disease is a leading cause of non-ischemic cardiomyopathy in endemic regions of Central and South America. In Belize, Triatoma dimidiata sensu lato has been identified as the predominate taxon but vectorial transmission of Chagas disease is considered to be rare in the country. We recently identified an acute case of vector-borne Chagas disease in the northern region of Belize. Here we present a subsequent investigation of triatomines collected around the case-patient's home. We identified yet undescribed species, closely related to Triatoma huehuetenanguensis vector by molecular systematics methods occurring in the peridomestic environment. The identification of a T. cruzi-positive, novel species of Triatoma in Belize indicates an increased risk of transmission to humans in the region and warrants expanded surveillance and further investigation.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Humans , Belize , Trypanosoma cruzi/genetics , Insect Vectors
18.
Acta Trop ; 251: 107117, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184291

ABSTRACT

Drivers for wildlife infection are multiple and complex, particularly for vector-borne diseases. Here, we studied the role of host competence, geographic area provenance, and diversity of vector-host interactions as drivers of wild mammal infection risk to Trypanosoma cruzi, the aetiological agent of Chagas disease. We performed a systematic sampling of wild mammals in 11 states of Mexico, from 2017 to 2018. We tested the positivity of T. cruzi with the Tc24 marker in tissues samples for 61 wild mammal species (524 specimens sampled). 26 mammal species were positive for T. cruzi, of which 11 are new hosts recorded in Mexico 75 specimens were positive and 449 were negative for T. cruzi infection, yielding an overall prevalence of 14.3%. The standardized infection risk of T. cruzi of our examined specimens was similar, no matter the host species or their geographic origins. Additionally, we used published data of mammal positives for T. cruzi to complement records of T. cruzi infection in wild mammals and inferred a trophic network of Triatoma spp. (vectors) and wild mammal species in Mexico, using spatial data-mining modelling. Infection with T. cruzi was not homogeneously distributed in the inferred trophic network. This information allowed us to develop a predictive model for T. cruzi infection risk for wild mammals in Mexico, considering risk as a function of the diversity of vector-host spatial associations in a large-scale geographic context, finding that the addition of competent vectors to a multi-host parasite system amplifies host infection risk. The diversity of vector-host interactions per se constitutes a relevant driver of infection risk because hosts and vectors are not isolated from each other.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Animals, Wild/parasitology , Chagas Disease/epidemiology , Chagas Disease/veterinary , Chagas Disease/parasitology , Triatoma/parasitology , Mammals/parasitology , Zoonoses/epidemiology , Geography
19.
Acta Trop ; 251: 107098, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215899

ABSTRACT

How far are we from predicting the occurrence of zoonotic diseases? In this paper we have made use of both socioecological and ecological variables to predict Chagas disease occurrence. Chagas disease involves, Trypanosoma cruzi, a complex life-cycle parasite which requires two hosts: blood-feeding triatomine insects and vertebrate hosts including humans. We have used a common risk assessment method combined with datasets that imply critical environmental and socioeconomic drivers of Chagas dynamics to predict the occurrence of this disease. We also carried out a network analysis to assess the interactions among triatomines and mammal host species given their human contact via whether hunted, domesticated or associated with anthropogenic landscapes in Mexico. We found that social backwardness variation, lack of health services and altitude had the largest relative influence Chagas events. Triatoma pallidipennis made use of the largest host diversity. Host species shared by the highest number of different triatomines were a woodrat, the highly appreciated bushmeat, and racoon. These results indicate both the predominance of socio-economic factors over ecological ones, and how close we are from predicting zoonotic diseases.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Humans , Triatoma/parasitology , Insect Vectors/parasitology , Mammals , Zoonoses/epidemiology
20.
Acta Trop ; 250: 107087, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38061614

ABSTRACT

Triatomine insects are vectors of the protozoan parasite Trypanosoma cruzi- the causative agent of Chagas disease. Chagas disease is endemic to Latin America and the southern United States and can cause severe cardiac damage in infected mammals, ranging from chronic disease to sudden death. Identifying interactions among triatomines, T. cruzi discrete typing units (DTUs), and blood feeding hosts is necessary to understand parasite transmission dynamics and effectively protect animal and human health. Through manual insect trapping efforts, kennel staff collections, and with the help of a trained scent detection dog, we collected triatomines from 10 multi-dog kennels across central and south Texas over a one-year period (2018-2019) and tested a subset to determine their T. cruzi infection status and identify the primary bloodmeal hosts. We collected 550 triatomines, including Triatoma gerstaeckeri (n = 515), Triatoma lecticularia (n = 15), Triatoma sanguisuga (n = 6), and Triatoma indictiva (n = 2), with an additional 10 nymphs and 2 adults unable to be identified to species. The trained dog collected 42 triatomines, including nymphs, from areas not previously considered vector habitat by the kennel owners. Using qPCR, we found a T. cruzi infection prevalence of 47 % (74/157), with T. lecticularia individuals more likely to be infected with T. cruzi than other species. Infected insects harbored two T. cruzi discrete typing units: TcI (64 %), TcIV (23 %), and mixed TcI/TcIV infections (13 %). Bloodmeal host identification was successful in 50/149 triatomines, revealing the majority (74 %) fed on a dog (Canis lupus), with other host species including humans (Homo sapiens), raccoons (Procyon lotor), chickens (Gallus gallus), wild pig (Sus scrofa), black vulture (Coragyps atratus), cat (Felis catus), and curve-billed thrasher (Toxostoma curviostre). Given the frequency of interactions between dogs and infected triatomines in these kennel environments, dogs may be an apt target for future vector control and T. cruzi intervention efforts.


Subject(s)
Chagas Disease , Triatoma , Trypanosoma cruzi , Animals , Dogs , Humans , Cats , Trypanosoma cruzi/genetics , Texas/epidemiology , Insect Vectors/parasitology , Chickens , Chagas Disease/epidemiology , Chagas Disease/veterinary , Chagas Disease/parasitology , Triatoma/parasitology , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...